Photochemistry of Epoxyquinones. Part 7.¹ Photo-induced Cycloaddition of 2,3-Dimethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone to Olefins

By Atsuhiro Osuka • and Hitomi Suzuki, Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790, Japan

Kazuhiro Maruyama, Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

Irradiation of 2,3-dimethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (1a) in benzene gave the carbonyl ylide (2a) or the 1,3-diradical (3a), which was trapped with a variety of olefins, including simple alkenes, cycloalkenes, aromatic olefins, allyl alcohols, electron-rich olefins, and electron-deficient olefins. The excited state of (1a) was quenched by electron-rich olefins presumably *via* charge-transfer, while (2a) or (3a) react most readily with electron-deficient olefins. Cycloaddition of (2a) or (3a) to *cis*- and *trans*-but-2-ene proceeded stereospecifically. Further irradiation of the primary adducts gave the spirophthalide (5) and the alkylidenephthalides *Z*-(7) and *E*-(7) *via* preference is believed to arise from the different efficiencies of the radical recombination of possible biradicals.

RECENTLY, we reported the photochemical production of the carbonyl ylide (2) or the 1,3-diradical (3) from several epoxy-naphthoquinones (1).² These products were trapped by olefins to give the tricyclic diketones (5), which underwent secondary photorearrangement and resulted in the formation of the spirophthalide (6) and the alkylidenephthalides Z-(7) and E-(7) (Scheme 1). However, several questions remained unanswered in connection with the photoinduced cycloaddition of a epoxynaphthoquinone to an olefin. First, the nature and lifetime of the excited state of (1) responsible for the production of (2) or (3) was unknown. Second, the relative reactivity and the stereochemistry of addition of a variety of olefins toward (2) or (3) had not been well established, since the olefins hitherto examined had been limited to certain compounds such as 2-norbornene, dimethyl fumarate, and N-phenylmaleimide. Finally, studies on the mechanism of the secondary photorearrangement of (5) had been limited. Thus, we have examined the photochemical reactions of 2,3-dimethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (1a) with a variety of olefins including simple alkenes, cycloalkenes, aromatic olefins, allyl alcohols, electron-deficient olefins, and electron-rich olefins. Here, we describe the effects of substituents of olefins on the nature and efficiency of the photoaddition process as well as the selective α -

SCHEME 1 * The olefins (4) used in the work are listed in Table 1.

cleavage at a more crowded site in the primary adducts (5).

RESULTS AND DISCUSSION

Product Analysis.—Simple alkenes. Irradiation of a benzene solution of compounds (1a) (0.015 M) containing 2-methylpropene (4a) (ca. 0.2 M, 5 °C, Pyrex) for up to 100% conversion followed by chromatographic separation over silica gel afforded the spirophthalide (6a) (41%) and a 1:1 mixture of the alkylidenephthalides Z- and E-(7a) (26%). When the irradiation was stopped at 65%

conversion, the primary adduct (5a) was obtained in a yield of 42% along with (6a) (23%) and E- and Z-(7a) (14%). A brief exposure of (5a) under the irradiation conditions gave (6a) and Z- and E-(7a). Structure assignments to these photoproducts were made on the basis of their characteristic spectral data (see Table 5—10). Further, reduction of the mixture of Z-(7a) and E-(7a) with NaBH₄, which gave Z-(9a) and E-(9a) in 40 and 36% yield, respectively, provided strong support for the structure of (7a).

In order to study the stereochemistry of the addition process, we examined the photoproducts with *trans*but-2-ene (4b) and *cis*-but-2-ene (4c). Irradiation of (1a) and (4b) in benzene furnished a single primary adduct (5b) (92%) at 52% conversion of (1a). The ¹H n.m.r. spectrum of (5b) indicated the presence of two methyl singlets at δ 1.55 and 1.63, two methyl doublets at δ 1.10 (J 7 Hz) and 1.20 (J 7 Hz), and multiplets due to methine protons at δ 1.7—1.9, consistent with the

 $R^1 = R^2 = Me, R^3 = R^4 = H$ a: b; $R^1 = R^4 = Me, R^2 = R^3 = H$ c-en; $R^1 = R^3 = Me$, $R^2 = R^4 = H$ c-ex; $R^1 = R^3 = H, R^2 = R^4 = Me$ d-en; $R^1 = R^3 = (CH_2)_3$, $R^2 = R^4 = H$ d-ex; $R^1 = R^3 = H$, $R^2 = R^4 = (CH_2)_3$ e-en; $R^1 = R^3 = (CH_2)_4$, $R^2 = R^4 = H$ e-ex; $R^1 = R^3 = H$, $R^2 = R^4 = (CH_2)_4$ f-ex; $R^1 = R^3 = (CH_2)_5$, $R^2 = R^4 = H$ f-ex; $R^1 = R^3 = H$, $R^2 = R^4 = (CH_2)_5$ g-en; $R^1 = R^3 = (CH_2)_6$, $R^2 = R^4 = H$ g-ex; $R^1 = R^3 = H$, $R^2 = R^4 = (CH_2)_6$ h-en; $R^1 = Me, R^2 = Ph, R^3 = R^4 = H$ i-en; $R^1 = Ph, R^2 = R^3 = R^4 = H$ i-ex; $R^1 = R^3 = R^4 = H, R^2 = Ph$ $R^1 = R^2 = Ph, R^3 = R^4 = H$ i: 1-ex; $R^1 = R^3 = R^4 = H$, $R^2 = CH_3OH$ l'-en; $R^1 = CH_2OAc, R^2 = R^3 = R^4 = H$ m-ex; $R^1 = R^3 = R^4 = H$, $R^2 = C(CH_3)_3OH$ n-ex; $R^1 = Me$, $R^2 = CH_2OH$, $R^3 = R^4 = H$ o-ex; $R^1 = Me$, $R^2 = R^3 = H$, $R^4 = CH_2OH$ q-en; $R^1 = CO_8 Me$, $R^2 = R^3 = R^4$ q-ex; $R^1 = R^3 = R^4 = H$, $R^2 = CO_2Me$ q'-en; $R^1 = CO_2H$, $R^2 = R^3 = R^4 = H$ r-en; $R^1 = CO_2 Me$, $R^2 = Me$, $R^3 = R^4 = H$ **r**-ex: $R^1 = Me, R^2 = CO_2Me, R^3 = R^4 = H$ r'-en; $R^1 = CO_2H$, $R^2 = Me$, $R^3 = R^4 = H$ s-en; $R^1 = CN$, $R^2 = R^3 = R^4 = H$ $R^1 = R^3 = R^4 = H, R^2 = CN$ s-ex: t-en; $R^1 = CN, R^2 = Me, R^3 = R^4 = H$ $R^1 = Me, R^2 = CN, R^3 = R^4 = H$ t-*ex* : u-en; $R^1 = OEt, R^2 = R^3 = R^4 = H$ u-ex; $R^1 = R^3 = R^4 = H, R^2 = OEt$ v-en; $R^1 = OEt$, $R^2 = Me$, $R^3 = R^4 = H$ v-ex; $R^1 = Me$, $R^2 = OEt$, $R^3 = R^4 = H$ $R^1 = R^2 = OEt, R^3 = R^4 = H$ w: $R^{1}R^{3} = SCH=CH, R^{2} = R^{4} = H$ x;

assigned *trans*-structure. On the other hand, irradiation of a benzene solution of (1a) in the presence of (4c) gave rise to a 5.8:1 mixture of the primary adducts (5c-en) and (5c-ex), which was separated by column chromatography on silica gel. In contrast to (5b), both (5c-en) and (5cex) had a symmetric *cis*-structure, which was evident from their simple ¹H n.m.r. spectra. The stereochemistry of (5c-en) and (5c-ex) was determined on the basis of their spectral data and comparisons to those obtained duct (5d-en) (50%), the spirophthalide (6d) (2%), and the alkylidene phthalides Z-(7d) (15%) and E-(7d) (15%). G.c. analysis at a low conversion indicated the formation of another primary adduct (5d-ex) and the ratio of (5d-en) to (5d-ex) based on the peak intensity was 0.13, but (5d-ex) was neither isolated nor characterised. The stereochemistry of the primary adduct is difficult to determine with certainty, because only one of the isomers could be isolated. But endo-stereochemistry was tenta-

		IABLE	S L			
Photoinduced	cycloaddition	of epox	ynaphthog	uinone (la)	to olefins ^a

					Isolated yields (%) •				
		Conc *	Irrad	Conversion	(5)	(6)	(7)
Run 1 2	Olefin $CH_2=CMe_2$ (4a) $CH_2=CMe_2$ (4a)	(м) 0.2 0.2	time (h) 2 0.25	(%) 100 65	endo 4	<i>ex</i> 0 2	41 23	Z 13 7	E 13 7
3	MeCH=CHMe (4b)	0.2	0.25	52	9	2			
4	MeCH=CHMe (4c)	0.2	0.25	59	81	14	_		_
5	$CH=CH(CH_2)_2 \cdot CH_2$ (4d)	0.11	2	90	50		2	15	15
6	$CH=CH(CH_2)_3 \cdot CH_2$ (4e)	0.06	2	98	35		d	29	26
7	$CH=CH(CH_2)_4 \cdot CH_2$ (4f)	0.08	2	92	49		d	21	21
8	$CH=CH(CH_2)_5 CH_2$ (4g) Ph(Me)C=CH_4 (4b)	0.06	2	97	4	1•	d		29 /
10	$Ph(Me)C=CH_2$ (4h)	0.03	2	65		5	46	12	31
11	$PhCH=CH_{2}$ (4i)	0.2	5	0					
12	$PhCH=CH_{2}$ (4i)	0.05	4	69	16	19	15	23	23
13	$Ph_2C=CH_2$ (4j)	0.02	5	82	_	-	40	12	13
14	$Ph_2C=CPh_2$ (4k)	0.01	2	0					
15	$CH_2 = CH \cdot CH_2 \cdot OH$ (41)	0.1	0.5	82	84 🗸			6	5
16	$CH_2 = CH \cdot C(Me_2) \cdot OH (4m)$	0.1	0.5	78	62 ø				
17	$CH_2 = C(Me) \cdot CH_2 \cdot OH$ (4n)	0.125	0.5	60	47 🕫		_	23	18
18	MeCH=CH·CH ₂ ·OH (40)	0.1	0.5	75	60 ø			12	4
19	HO·CH, CH=CH·CH, OH (4p)	0.1	1	84	84 "			<u> </u>	
20	CH.=CH.CO.Me (4a)	0.15	0.5	87	17	44	17	12	8
21	CH.=C(Me)·CO.Me (4r)	0.125	0.5	60	8.6	35	21	18	14
22	$CH_{=}CHCN$ (4s)	0.2	0.5	72	86		4	2	2
23	$CH_{e}=C(Me)CN_{e}(4t)$	0.15	0.5	77	66		8	7	12
24	$EtO CH = CH_{\bullet} (4u)$	0.07	0.5	53	34	32	h	h	h
25^{-}	$EtO(Me)C=CH_{\bullet}(4v)$	0.06	1	77	9.4	14		22	20
26	$(EtO)_{2}C=CH_{2}$ (4w)	0.05	ī	60	3	4	h	h	ĥ
27	\dot{s} ·CH=CH·C= \dot{C} H (4x)	0.2	2	89		7 4	h	h	h

⁶ Benzene solutions 0.015 m in (1a) were used. ^b Concentrations of olefins. ^c Yields refer to the isolated ones based on the consumed amounts of (1a). ^d Trace amounts. ^c 1:1 Mixture of (5g-en) and (5g-ex). ^f 1:1 Mixture of Z-(7g) and E-(7g). ^g Isolated as the tetracyclic compounds (11). ^h Not determined. ^f The stereochemistry was not established.

for related compounds in the series. The chemical shift observed for the methine protons at C-7 and C-8 in (5c-ex) was lower (at & 2.55) relative to those (at & 2.40) in (5c-en) owing to the proximity of the carbonyl groups to the methine protons. The doublet methyl protons at C-7 and C-8 in (5c-en) appeared at higher field (at & 0.90) due to the shielding effects of the benzene ring, compared with those in (5c-ex) appearing at & 1.13. The results with (4b) and (4c) revealed the stereospecific nature of the addition process, indicating that the cycloaddition of (2a) or (3a) to olefins is a concerted $_{\pi}4 + _{\pi}2$ process.

Cycloalkenes. A benzene solution of (1a) (0.015 M) containing cyclopentene (4d) was irradiated at room temperature. Isolated products were the primary ad-

tively assigned for the major one on the basis of the comparison of the chemical shifts of methyl protons (at δ 1.62) with those of (5c-en) at δ 1.57 and of (5c-ex) at δ 1.42 and of the fact that the endo-adduct was preferentially formed in the reaction with (4c). Similar photoproducts were obtained in the reaction with cyclohexene (4e), cycloheptene (4f), and cyclo-octene (4g) (Table 1). Spirophthalides (6) and alkylidenephthalides (7) were again secondary photoproducts derived from primary adducts. But with cycloalkenes the spirophthalides (6d—g) were formed in very small amounts, compared with acyclic olefins.

Aromatic olefins. When irradiated in benzene solutions in the presence of 0.2M or more of 2-phenylpropene (4h) or styrene (4i) for a prolonged time, (1a) was re-

covered nearly quantitatively. This fact indicates that the photochemical ring opening of the oxiran ring to (2a) or (3a) from (1a) occurs via triplet excited state and is quenched by aromatic olefins with triplet energies much lower than that of (1a). But irradiation of a benzene solution of (1a) containing 0.03 M of 2-phenylpropene resulted in the formation of the primary adduct (5h-ex) (5%), the spirophthalide (6h) (46%), and the alkylidene phthalides Z-(7h) (12%) and E-(7h) (31%). The stereochemistry of (5h-ex) was readily determined on the basis of the highfield shift of the methyl protons at C-7 (at δ 1.03) due to the shielding effects of the phenyl group. None of the isomeric primary adduct (5h-en) was detected by g.c. nor ¹H n.m.r. analysis even at a low conversion. The structure of the alkylidene phthalides came from the transformation of E-(7h) into the corresponding alcohol E-(9h) with NaBH₄. The ¹H n.m.r. spectrum of E-(9h) showed the peaks at $\delta 1.18$ (d, J 7 Hz, 3 H), 1.34 (s, 3 H), 1.58 (s, 3 H), 3.02 and 3.34 (ABq,] 15 Hz, 2 H), and 4.04 (q, J 7 Hz, 1 H), only consistent with the structure of (9h) not with (10h). Similar irradiation

of a benzene solution 0.015 M in (1a) and 0.05 M in styrene (4i) gave the primary adducts (5i-en) (16%) and (5i-ex) (19%), the spirophthalide (6i) (15%), and the alkylidene phthalides Z-(7i) (23%) and E-(7i) (23%). The highfield shift of the methyl protons at C-6 (at & 1.13) in (5i-ex) characterised the exo-stereochemistry of the phenyl group in (5i-ex). Three products, the spirophthalide (6j) (40%), and the alkylidenephthalides Z-

(7j) (12%) and E-(7j) (13%), were formed by irradiating a benzene solution of (1a) containing 0.02 M of 1,1diphenylethylene (4j). Attempts to isolate the primary adduct (5j) were unsuccessful, since the rate of secondary photorearrangement of (5j) is so rapid that (5j) was merely detected in small amounts by a g.c. technique. Irradiation of a benzene solution of (1a) and tetraphenylethylene (4k) (0.01 M) resulted in the complete recovery of the starting materials.

Allyl alcohols. As noted above, primary adducts (5) are generally photolabile and readily converted into secondary photoproducts. Thus, isolation of compound (5) usually requires work-up at a relatively low conversion of (1a). In sharp contrast, we have found that the endo-primary adduct derived from the reaction with allyl alcohol is strikingly photostable owing to its hemiacetal structure which masks the photosensitive diketoform.³ Typically, irradiation of a benzene solution of (1a) (0.015 M) and allyl alcohol (4l) (0.1 M) followed by column chromatography on silica gel gave the tetracyclic adduct (111) in a high yield, 84%, along with the alkylidenephthalides Z-(71) (6%) and E-(71) (4%). The ¹³C n.m.r. spectrum of (111) revealed the presence of one ketone carbon at δ 203.2 and hemiacetal carbon at δ 107.4 p.p.m. Acetylation of (111) with perchloric acid in acetic anhydride gave a 78% yield of the diketoacetate (51'-en). However, g.c. analysis indicated the presence of another primary adduct at an early stage of the reaction. The major peak was found to correspond to Thus, the minor one seemed to correspond to the (111). isomeric *exo*-primary adduct (51-ex), which could not be isolated. The peak ratio of (111) to the minor one was 4.5 at 5% conversion of (1a) but decreased steadily as the reaction proceeded. Since an extended exposure of (111) under the same irradiation conditions merely brought about the formation of Z- and E-(71) in very small amounts, Z- and E-(71) appeared to be largely derived from the expected (51-ex). Several substituted allyl alcohols such as 2-methylbut-3-en-2-ol (4m), methallyl alcohol (4n), and trans-crotyl alcohol (40) were similarly found to react with (2a) or (3a), giving the tetracyclic compounds (11) as the major products. In the hope of obtaining a cage compound (12), the photochemical reaction of (1a) with cis-but-2-ene-1,4-diol (4p) was attempted, but only monohemiacetal (11p) was formed in 84% yield. The result with allyl alcohols may imply the possibility that photo-labile cycloadducts can be obtained even in the photo-induced cycloaddition by immediately masking the photo-sensitive group after the cycloaddition takes place.

Electron-deficient olefins. In order to investigate the effects of substituents of olefins on the nature and efficiency of the photoaddition process, we explored the photochemical reaction of (la) with both electron-deficient and electron-rich olefins.

Five products, the isomeric primary adducts (5q-en) (17%) and (5q-ex) (44%), the spirophthalide (6q) (17%), and the alkylidenephthalides Z-(7q) (12%) and E-(7q) (8%), were obtained with methyl acrylate (4q). The

stereochemistry of the methoxycarbonyl group in (5q) was deduced by the chemical shift of the methine protons and the methoxy-protons. The methine proton of (5q-ex)appeared at lower field (δ 3.38) due to the deshielding effects of the carbonyl group, compared with that of (5q-en) at δ 3.20. On the other hand, the methoxyprotons of (5q-en) appeared at higher field (δ 3.67) due to the shielding effect of the benzene ring, compared with that of (5q-ex) at δ 3.80. These structural assignments were unambiguously established by the independent synthesis of (5q-en) from (111). Jones' oxidation of (111) afforded the acid (5q'-en), which was treated with diazomethane in ether to give (5q-en) in 75% overall yield. The position of the methoxycarbonyl group in the alkylidenephthalides (7g) was determined on the basis of the fact both Z- and E-(7q) were readily deprotonated by K_2CO_3 in CDCl₃ and were alkylated with methyl iodide in dimethylformamide (DMF), giving the alkylidenephthalides Z-(7r) and E-(7r) in 79 and 86% yields, respectively, which were in all respects identical with the secondary photoproducts derived from the reaction with methyl methacrylate (4r). Irradiation of a benzene solution of (1a) in the presence of methyl methacrylate (4r) led to the formation of the primary adducts (5r-en) (8.6%) and (5r-ex) (35%), the spirophthalide (6r) (21%), and the alkylidenephthalides Z-(7r) (18%) and E-(7r) (14%). The endo-primary adduct (5r-en) was independently synthesized from (11m) in 56% overall yield.

Irradiation of (1a) with either acrylonitrile (4s) or methacrylonitrile (4t) resulted in the predominant formation of the endo primary adduct (5s-en) (86%) or (5t-en) (66%), along with the secondary photoproducts, (6s) (4%), Z-(7s) (2%), and E-(7s) (2%), or (6t) (8%), Z-(7t) (7%), and E-(7t) (12%). The endo-stereochemistry of the cyano-group in (5s-en) and (5t-en) was confirmed by the transformation, through alkaline hydrolysis and subsequent methylation with diazomethane, into (5q-en) and (5r-en) in overall yields of 55 and 63%, respectively. The alkylidenephthalides Z-(7s) and E-(7s) were easily deprotonated with K_2CO_3 and were alkylated with methyl iodide in DMF to give Z-(7t) and E-(7t) in yields of 72 and 75%, respectively. These transformations provided strong evidence for the assigned structures of both Z- and E-(7s) and Z- and *E*-(7t).

Electron-rich olefins. Finally, the carbonyl ylide (2a) or 1,3-diradical (3a) was trapped with electron-rich olefins such as ethyl vinyl ether (4u), 2-ethoxypropene (4v), and 1,1-diethoxyethylene (4w). In the photochemical reaction with (4u), we obtained the primary adducts (5u-en) (34%) and (5u-ex) (32%).⁴ The stereochemical assignment of the ethoxy-group rested on the significant difference of the chemical shifts of the ethoxy-group in (5u-en) appeared at higher field (δ 0.74) owing to the shielding effects of the benzene ring, compared with those of (5u-ex) appearing at δ 1.23. Photochemical reaction of (1a) with (4v) gave similarly the primary adducts (5v-en) (9.4%) and (5v-ex) (13.8%), and the alkylidene-

phthalides Z-(7v) (22%) and E-(7v) (20%). The primary adduct (5w) was isolated in the reaction with (4w). Interestingly, thiophen (4x) was found to be able to react with (2a) or (3a) resulting in the formation of the primary adduct (5x) in a yield of 7%, although the major course of the reaction was rather polymeric.

Reaction Mechanism.—The photoinduced cycloaddition of (1a) to olefins consists primarily of two processes, namely photochemical oxiran ring opening leading to the formation of (2a) or (3a) and 1,3-dipolar cycloaddition of olefin to (2a) or (3a). The photoreaction of (1a) was quenched by naphthalene ($E_t = 61$ kcal/mol) or piperylene ($E_t = 58$ kcal/mol) but insufficiently by biphenyl ($E_t = 66$ kcal/mol), and was sensitised by xanthone ($E_t = 74$ kcal/mol), indicating the triplet reaction.

Quantum yields for the formation of the primary adducts (5) in benzene solution 0.015 M in (1a) containing various concentrations of olefin were determined at 313 nm by using valerophenone as the chemical actinometer.⁵ At [olefin] > 0.01 M, the quantum yields decrease with increasing concentration of olefin, significantly in the case of electron-rich olefins or aromatic olefins. The total quantum yield (Φ_f) can be expressed as the product of two separate probabilities as shown in equation (1), where Φ_c is the probability that (2a) or (3a) will be produced after photoexcitation and Φ_p is the probability that (2a) or (3a) will react with olefin to give the primary adducts. Since Φ_p must be larger at higher olefin concentrations, the decrease in Φ_f should be attributed to the decrease in Φ_c . Assuming that olefin

quenches the triplet excited state of (1a) as shown in Scheme 2, Φ_f is expressed in equation (2).

$$\Phi_{f} = \Phi_{c} \cdot \Phi_{p} \tag{1}$$

$$\Phi_{i} = \Phi_{i_{BC}} \cdot \frac{k_{i}}{k_{d}^{3} + k_{i} + k_{o} + k_{e}[\text{olefin}]} \cdot \frac{k_{r}[\text{olefin}]}{k_{d}^{\circ} + k_{r}[\text{olefin}]} \quad (2)$$

If $k_{\rm r}$ [olefin] $\gg k_{\rm d}^{\rm c}$,

$$\Phi_t = \phi_{isc} \cdot \frac{k_i}{k_d^3 + k_i + k_o + k_e[\text{olefin}]}$$
(3)

$$\Phi_{\mathbf{f}}^{-1} = K^{-1} \cdot (1 + {}_{\mathbf{e}} k \tau^{\mathbf{0}} [\text{olefin}])$$
(4)

where

$$K = \Phi_{isc} \cdot \frac{k_i}{k_d^3 + k_i + k_o}, \ \tau^0 = \frac{1}{k_d^3 + k_i + k_o}$$
(5)

Plots of reciprocal quantum yields vs. olefin concentrations were found to be linear at [olefin] > 0.1 M with virtually the same intercept (1.75) but with different slopes (see Figure), consistent with the reaction scheme

FIGURE Plots of reciprocal quantum yields for the formation of the primary adducts (5) vs. olefin concentrations; (4f) \bigcirc , (4i) \Box , (4q) \bigcirc , (4r) \blacktriangle , and (4u) \bigcirc

described in Scheme 2. From the intercept and slopes, values of K and $k_0\tau^0$ were determined. The value of K (0.57) may be regarded as the inherent quantum yield for the formation of (2a) or (3a). In order to estimate the life time, τ^0 , of triplet (1a), benzene solutions 0.015 M in (1a) and 0.02 M in cyclohexene (4e) containing various concentrations of naphthalene were irradiated in parallel with the valerophenone actinometer.⁵ Stern-Volmer plots were linear to $\Phi^0/\Phi = 6$ with a slope $(k_q\tau)$ of 99 M⁻¹. With $k_q = 5 \times 10^9$ M⁻¹s⁻¹,⁶ $1/\tau = 5.1 \times 10^7$ s⁻¹, where

$$\tau = \frac{1}{k_{\rm d}^{\rm 3} + k_{\rm i} + k_{\rm o} + k_{\rm e}[0.02]} \tag{6}$$

From $k_{\rm e}\tau^0 = 3.2 \,{\rm M}^{-1}$ and equation (6), $k_{\rm e}$ for cyclohexene and $1/\tau^0$ were calculated to be $1.5 \times 10^8 \,{\rm M}^{-1}{\rm s}^{-1}$ and $4.7 \times 10^7 \,{\rm s}^{-1}$, respectively. Results with other olefins are listed in Table 2. The $1/\tau^0$ value equals the sum of the rate constants for oxiran ring opening (k_i) and other chemical reactions (k_0) such as α -cleavage ⁷ and nonradiative decay (k_d^3) . Values of $k_d^3 \approx 3 \times 10^5 \,{\rm s}^{-1}$ have been reported for a number of aryl ketones in benzene solution.⁸ Such values are small compared to $1/\tau^0$, indicating that $k_{\rm i} \approx 1/\tau^0$.

It seems that quenching by electron-rich olefins (4u) and (4v) involves charge-transfer. The increase in k_{e} upon going from (4u) to (4v) is probably the best evidence for this inference. Here electronic effects predominate over steric effects.9 The same trend that methyl group on the double bond enhances k_e by a factor of 2-6 indicates charge-transfer quenching for simple alkenes and electron-deficient olefins as well as electron-rich olefins. Since oxetan-type products were not found under our experimental conditions, it is likely that the charge-transfer complex largely collapses to the starting materials but not to a 1,4-biradical such as (13). Kochevar and Wagner examined the quenching of the type II photoelimination of butyrophenone ($E_t = 72$ kcal/mol) by a variety of olefins and concluded that charge-transfer predominates for electron-rich olefins, while energy-transfer for electron-deficient olefins such as chloroethylenes and fumaronitrile.¹⁰ Although the triplet energy of (1a) is not determined accurately, it is deduced to be in the range of 65-70 kcal/mol on the basis of the quenching experiments. Thus, it seems unlikely that triplet (1a) was quenched by methyl methacrylate or methacrylonitrile via energy transfer. Quenching by styrene or 2-phenylpropene is nearly

TABLE 2 Photoinduced cycloaddition of (1a) to olefins

Olefin	Φ, "	$k_{e}\tau^{0}$ (m ⁻¹) ^b	10 ⁻⁸ k _e (m ⁻¹ s ⁻¹) ^c	endo exo ª	Relative • reactivity
(4 d)	0.42	4.3	2.0	7.4	2.3
(4e)	0.35	3.2	1.5	13.0	0.078
(4f)	0.49	4.0	1.9	4.8	1.0
(4g)	0.44	4.4	2.1	2.35	7.4
(4h)	0.12	68	32	exo rich	1.02
(4i)	0.094	105	49	0.28	32
(41)	0.51	1.3	0.61	4.5	1.4
(4n)	0.52	2.7	1.3	1.6	0.17
(4 0)	0.46	4.4	2.1	3.5	0.052
(4a)	0.54	0.85	0.40	0.35	32
(4r)	0.46	5.0	2.4	0.25	4.2
(4s)	0.53	2.3	1.1	endo rich	8.2
(4t)	0.41	7.8	3.7	endo rich	0.74
(4 u)	0.37	11	5.2	1.4	0.7
$(4\mathbf{v})$	0.22	28	13	1.1	0.02
(4v) 1	0.54	1.1	0.52	2.3	1.0

• Quantum yields for the formation of the primary adducts (5) at [olefin] = 0.1 M. • Least-squares slopes of linear Stern-Volmer plots in the Figure. • Calculated on the assumption that $1/r^9 = 4.7 \times 10^7$ s⁻¹. • The *endo/exo* ratio of the primary adducts. • Relative reactivity toward (2a) or (3a) with hex-1-ene as the standard. f Hex-1-ene.

diffusion-controlled and undoubtedly involves primarily, and perhaps exclusively, energy transfer.

While quenching experiments indicate that the oxiran ring opening is triplet in character and the nascent ylide or 1,3-diradical is formed in the triplet state,¹¹ the subsequent 1,3-dipolar cycloaddition reactions are stereospecific, which is evident from the results obtained upon addition of either trans- or cis-but-2-ene, trans-crotyl alcohol, or cis-but-2-ene-1,4-diol to (2a) or (3a). These are features which characterise the corresponding groundstate reactions and thus indicate that intersystem crossing to the singlet manifold occurs prior to the cycloaddition.¹² The endo-exo ratios of the primary adducts were determined by g.c. analysis at low conversions (e.g. < 5%) and are included in Table 2. Generally, endo-exo stereoselectivity is poor. But there exists a tendency toward endo-orientation for electron-releasing substituents such as alkyl, hydroxymethyl, and ethoxygroups, and towards exo-orientation for electron-attracting substituents such as methoxycarbonyl and phenyl

that of (5q-en) + (5q-ex). Thus it is clear that the quenching of triplet (1a) bears no relation to product formation. The relative reactivities thus obtained are listed in Table 2. In contrast to the rate constants for the quenching of triplet (1a), electron-deficient olefins are more reactive than electron-rich olefins. A methyl group on the double bond reduced the reactivity toward (2a) or (3a) by a factor of ca. 10. These effects of the methyl group are probably the result of both electronic and steric factors and seem to operate to a greater extent in a cycloaddition transition state in which the methyl group is oriented exo. From the order of the relative reactivities of olefins, it is indicated that the interaction between the highest-occupied molecular orbital (HOMO) of (2a) and the lowest-unoccupied molecular orbital (LUMO) of olefin is most important.¹³ It is interesting to note that an aromatic olefin such as styrene (4i), which is an efficient triplet quencher, is very reactive toward (2a) or (3a). This result is consistent with the above conclusions, since LUMO energies of aromatic

TABLE 3

Competitive experiment between (4u) and (4q)

Olefins (Concn)					Produ	Relative	
Run	(4u) (M)	(4q) (M)	Φ _{obs.} *	Φ_{calc}	(5u)	(5q)	of $(4q)$ to $(4u)$
1	0.1	0.1	0.24	0.26	2.1	97.9	46.6
2	0.2	0.1	0.15	0.17	4.1	95.9	46.8
3	0.2	0.05	0.17	0.18	8.0	92.0	46 ′

^a Benzene solutions 0.015M in (1a) were used. ^b Quantum yield for the disappearance of (1a). ^c Calculated quantum yield for the disappearance of (1a) based on $k_e \tau^0$ values in Table 2.

groups, with the exception of the cyano-group which showed a prominent *endo*-orientating tendency. These orientations may be accounted for by considering the dipole-dipole interactions rather than secondary orbital overlap or steric factors, but with acrylonitrile or methacrylonitrile some other interactions, presumable secondary π -orbital overlap, would predominate over the dipole-dipole interaction.

The relative reactivities of olefins toward (2a) or (3a) were determined by competition experiments. Typically, experiments for ethyl vinyl ether (4u) vs. methyl acrylate (4q) are described (Table 3). Benzene solutions 0.015 M in (1a) containing various concentrations of (4u) and (4q) were irradiated for a short enough time for the ratio of the olefins not to change significantly from the initial ratio. The ratio of (5u-en) +(5u-ex) to (5q-en) + (5q-ex) was divided by the concentration ratio of the olefins, giving the relative reactivity of (4u) to (4q). The relative reactivity is not affected by the concentration ratio. In Table 3 are included the observed quantum yields for the disappearance of (1a) and the calculated ones based on the $k_e \tau^0$ values in Table 2, assuming that quenching by each olefin is simply additive. Good agreement of both values indicates the assumption is correct. Accordingly, in run 3 in Table 3, ca. 67% of the triplet (1a) is guenched by (4u), while only 2.6% by (4q). However, the amount of (5u-en) + (5u-ex) is merely 11.5% as much as

olefins should be lower. In the case of tetraphenylethylene (4k), steric hindrance would be too large for the addition to take place.

The primary adducts (5) undergo novel photorearrangement to give the spirophthalides (6) and the alkylidenephthalides (7) simultaneously. The photorearrangement is likely to begin with α -cleavage leading to a biradical (14), followed by lactonisation to give a 1,4biradical (15) which cyclizes to give (6) or isomerizes to give (7) (Scheme 3). However, as the initial step, another biradical (16) could be formed as well as (14) and collapse to the regioisomeric alkylidenephthalides Z- and E-(8) along with (6). Therefore, the predominant formation of (7) over (8) here requires the preference of afission over b-fission (designated in Scheme 3) as the reaction course. On the other hand, photolysis of (18ad) led to the predominant formation of Z- and E-(22), which were derived from b-fission (designated in Scheme 4).¹³ Predominant b-fission in (18) may be simply accounted for in view of the smaller bond energy of the b-bond which is weakened by two adjacent oxygen atoms, compared with that of the a-bond. But it appears to be difficult to rationalize the results for (5) on the basis of simple energetic considerations of the bond to be cleaved. In order to obtain more information on the mechanism of the reaction, we have studied the quantitative aspects of the secondary photorearrangement of (5). The photoreactions of (5) and (18) were

SCHEME 3

a – fission 🗙

quenched by naphthalene or piperylene and were sensitized by xanthone, thus indicating the occurrence of triplet reaction. Quantum yields for the photorearrangement and triplet life times of (5) were determined at low conversions (e.g., <4%) with the use of the valerophenone actinometer and the naphthalene quencher. The data are collected in Table 4. Results for compounds (18) are included for purposes of comparison.

TABLE 4

Quantum yields and kinetic data for the photorearrangement of (5) and (18)

			10-6 1/
Reactant	ወያ	$k_{q}\tau(M^{-1})$ ^c	$\tau(s^{-1})^{'d}$
(5a)	0.57	600	8.3
(5b)	0.21	510	9.8
(5c-en)	0.24	570	8.8
(5d-en)	0.43	550	9.1
(5f-en)	0.18	700	7.1
(5h-ex)	0.69	510	9.8
(5i-ex)	0.36	550	9.1
(5q-ex)	0.51	460	11.0
(5r-ex)	0.62	440	11.4
(5s-en)	0.47	780	6.4
(5t- <i>en</i>)	0.57	550	9.1
(18a)	0.010	90	56
(18b)	0.021	85	59
(18c)	0.0086	105	48
(18d)	0.0094	130	38

^a Benzene solutions 0.015 m in (5) or (18) were used. ^b Quantum yields for the disappearance of (5) or (18). ^c Least-squares slopes of linear Stern-Volmer plots in benzene solutions using naphthalene as the triplet quencher, $\pm 10\%$. ^d Assuming $k_q = 5 \times 10^9$ m⁻¹ s⁻¹.

It is very significant that all eleven primary adducts (5) examined have virtually the same triplet lifetimes within experimental error, even though they rearrange with varying efficiencies. Since all eleven diketones cleave to biradicals of comparable stability, it would be expected that they would do so at comparable rates. On the other hand, the triplet lifetimes of (18) are by a factor of 5-6 shorter than those of the corresponding (5). The decrease in lifetime τ upon replacement of the C-7 methylene by oxygen is entirely consistent with the primary triplet photoprocess for (5) and (18) being one of α -cleavage to yield a biradical, since (18) can cleave to give a more stabilized biradical (21).

However, the quantum yields seem to be determined primarily by the behaviour of the biradical intermediate. Substituents at C-7 in (5) enhance the quantum yield, while replacement of C-7 methylene with oxygen reduces the quantum yield drastically. It is well recognized that radical recombination is one of the most common reactions derived from radical pairs from a-cleavage of alkyl aryl ketones.¹⁴ Thus, the low quantum yields for (18) might reflect the efficient cage recombination of the biradical (21), while considerably higher quantum yields for (5) might reflect the decreased propensity of the intermediate biradical (14) to recouple. It is plausible in this rigid system that substituents at C-7 retard the radical recombination or render the biradical conformation favourable for the lactonisation going to products sterically through something like buttressing effects, while oxygen at C-7 will exert negligible steric effects for radical reactions. Therefore, we may conclude that the preference of a-fission over b-fission in (5) as the reaction course arises from the difference between the efficiencies of the recombination in the biradicals (14) and (16).

EXPERIMENTAL

Melting points were measured on a Yanagimoto micro melting point apparatus and are uncorrected. I.r. spectra were recorded on a Hitachi Model 260–10. ¹H N.m.r. spectra were recorded on a JEOL PS-100 and a JEOL JMN-C-60HL machine and chemical shifts are reported in p.p.m. on the δ scale from internal Me₄Si. ¹³C N.m.r. spectra were recorded on a JEOL FX-100. Elemental analyses were performed at the Microanalytical Laboratory of Kyoto University. G.c. analyses were performed on a Hitachi Model 163, using a $3\phi \times 1$ m stainless-steel column packed with 10% SE-30 on Celite 545 AW. Preparative separations were performed by column chromatography over silica gel (Wakogel C-200). U.v. irradiations were carried out in a Pyrex vessel (Eikosha EHB-WF) under an argon atmosphere with an Eikosha 300-W high pressure Hg lamp.

General Procedure for the Photochemical Reaction of (1a) with Olefin.—Solvent benzene was purified by distillation from benzophenone ketyl solution. The olefins (4a) (99%), (4b) (99%), (4c) (98%), (4f) (99%), (4m) (98%), (4o) (93%), (4p) (95%), (4q) (98%), (4r) (98%), (4s) (98%), (4u) (99%), and (4x) (99%) were purchased from Tokyo Kasei Kogyo Co. The following olefins were obtained from Nakarai Kagaku Co.: (4d) (99%), (4e) (99%), (4h) (99%), (4i) (98%), (4l) (99%), (4n) (99%), (4t) (97%), and (4y) (98%). The following olefins were obtained from Aldrich Chemical Co.: Argon was bubbled through a solution of $(1a)^2$ and olefin in benzene (400 ml) in a Pyrex vessel for 10 min and then irradiated with water cooling for an appropriate period of time. The progress of the reaction was followed. After removal of the solvent and excess of olefin, the residual yellow oil was chromatographed over silica gel column, using ether-hexane as the eluant. Final purification was usually accomplished by preparative t.l.c. and recrystallization. M.p.s, i.r. and ¹H n.m.r. spectral results and the elemental analyses of photoproducts are summarized in Table 5-12.

¹³C N.m.r. data of selected photoproducts are as follows: (6h); 11.1 (q), 14.6 (q), 20.6 (q), 48.2 (t), 50.9 (s), 89.6 (s),
92.3 (s), 99.3 (s), 125.7 (d), 126.3 (d), 126.7 (s), 127.3 (d),
127.5 (d), 128.6 (d), 129.7 (d), 134.2 (d), 145.2 (s), 146.4 (s), and 168.7 (s) p.p.m.

Z-(7h): 18.2 (q), 20.2 (q), 25.6 (q), 42.1 (t), 56.3 (s),120.2 (s), 123.1 (d), 125.2 (d), 126.4 (d), 126.8 (d), 127.2 (d), 128.5 (d), 134.1 (d), 138.2 (s), 141.9 (s), 143.3 (s), 166.4 (s), and 209.5 (s) p.p.m.

E-(7h): 18.9 (q), 19.3 (q), 25.6 (q), 39.9 (t), 56.2 (s), 121.7 (s), 123.0 (d), 125.5 (d), 126.6 (d), 127.5 (d), 128.6 (d), 129.0 (d), 134.2 (d), 138.2 (s), 142.2 (s), 143.7 (s), 166.5 (s), and 209.8 (s) p.p.m.

(5i-en): 23.9 (q), 24.4 (q), 41.3 (t), 55.2 (d), 89.1 (s), 92.5 (s), 124.7 (d), 126.9 (d), 127.5 (d), 128.5 (d), 129.1 (d), 129.7 (d), 130.2 (d), 134.3 (s), 135.2 (s), 135.8 (s), 203.5 (s), and 203.9 (s) p.p.m.

(5i-ex): 21.4 (q), 23.5 (q), 42.8 (t), 65.0 (d), 89.2 (s), 91.5 (s), 126.8 (d), 127.3 (d), 128.5 (d), 129.0 (d), 129.3 (d), 132.0 (d), 133.1 (d), 134.1 (s), 135.5 (s), 138.1 (s), 206.8 (s), and 209.2 (s) p.p.m.

(6j): 22.2 (q), 22.6 (q), 52.1 (t), 61.2 (s), 89.6 (s), 91.0 (s), 98.2 (s), 125.3 (d), 125.8 (d), 126.0 (d), 126.3 (d), 127.2 (d), 127.8 (d), 129.0 (d), 129.8 (d), 130.2 (s), 134.1 (d), 145.1 (s), 145.5 (s), 145.7 (s), and 167.7 (s) p.p.m.

(111): 19.5 (q), 24.9 (q), 44.1 (t), 50.2 (d), 71.3 (t), 89.7 (s), 94.4 (s), 107.3 (s), 123.s (d), 126.5 (d), 129.2 (d), 130.7 (d), 137.1 (s), 140.5 (s), and 206.3 (s) p.p.m.

Reduction of Z- and E-(7a) with NaBH₄.—A 1 : 1 mixture of the alkylidenephthalides Z- and E-(7a) (100 mg), dissolved in methanol (20 ml), was reduced with NaBH₄ (20 mg). The mixture was stirred for 1 h at room temperature, poured into water, and extracted twice with ether. Separation on a short silica gel column gave Z-(9a) (40 mg, 40%) and E-(9a) (36 mg, 36%).

(Z)- and (E)-3-(4-Oxo-1,3,3-trimethylpentylidene)phthalide (7a).— ν_{max} (CCl₄) 2 980, 1 770, 1 765, 1 690, 1 250, and 730 cm⁻¹; δ (CDCl₃) 1.24 (s, 6 H), 1.27 (s, 6 H), 2.05 (C=C-Me), 2.14 (C=C-Me), 2.27 (s, 6 H, CO-Me), 2.81 (s, 2 H), 2.93 (s, 2 H), and 7.4—8.0 (m, 8 H).

(Z)-3-(4-Hydroxy-1,3,3-trimethylpentylidene)phthalide Z-(9a): m.p. 124—125 °C, ν_{max} (KBr) 3 480, 2 970, 1 770, 1 590, 1 250, and 730 cm⁻¹; δ (CDCl₃) 1.05 (s, 6 H), 1.22 (d, J 6 Hz, 3 H),2.20 (s, C=C-Me), 2.67 (s, 2H), 3.55 (q, J 6 Hz, CH-OH), and 7.4—7.7 (m, 4 H) (Found: C, 73.65; H, 8.0. C₁₈H₂₀O₃ requires C, 73.82; H, 7.74%).

(E)-3-(4-Hydroxy-1,3,3-trimethylpentylidene)phthalide E-(9a): m.p. 98—99 °C ν_{max} (KBr) 3 560, 2 990, 1 775, 1 600, 1 250, and 790 cm⁻¹; δ (CDCl₃) 0.95 (s, 6 H), 1.47 (d, J 7 Hz, 3 H), 2.13 (s, C=C-Me), 2.85 (s, 2 H), 3.67 (q, J 7 Hz, CH-

		Physical proper	ties of the primar	y adducts (5)	
Compd.	M .p. (°C)	Formula	Found (%)	Required (%)	$\nu_{\rm max}/\rm cm^{-1}$ (KBr)
(5a)	8585	$C_{16}H_{18}O_{3}$	C, 74.55	74.39	2 990, 1 690, 1 305, 1 250,
(51)	140 141		H, 7.05	7.02	730
(96)	140141	C ₁₆ H ₁₈ O ₃	C, 74.35	74.39	2 990, 1 685, 1 300, 1 250
(5c-en)	8485	CHO.	11, 7.0	7.02	730 9 990 1 600 1 940 1 140
(00 010)	01 00	016111803	H. 7.1	7.02	740
(5c-ex)	94—96	$C_{16}H_{18}O_{3}$	C, 74.4	74.39	2 950, 1 690, 1 250, 1 150
•			H, 7.15	7.02	750
(5d-en)	12 9—13 0	C ₁₇ H ₁₈ O ₃	C, 75.65	75.53	2 950, 1 685, 1 250, 730
(-)	00 100	A H A	H, 6.55	6.71	
(oe- <i>en</i>)	99100	$C_{18}H_{20}O_{3}$	C, 76.3	76.03	2 930, 1 680, 1 590, 1 260
(5f_0m)	113114	сно	п, 1.1 С 76 А	7.09	1 200, 980, 720
(01-01/0)	115114		U, 70.4 H 74	70.40	2 900, 1 090, 1 240, 1 140
(5h-ex)	103-104	Cat HanOn	C 78.8	78.72	3 050 1 690 1 590 1 150
(012 077)		°\$120°3	H. 6.3	6.29	740
(5i-en)	8990	C _{en} H _{1e} O ₃	C, 78.45	78.41	2 950, 1 690, 1 590, 1 150
. ,		20 10 5	H, 5.95	5.92	740
(5i- <i>ėx</i>)	95	$C_{20}H_{18}O_3$	C, 78.15	78.41	2 950, 1 685, 1 600, 1 140
			H, 5.95	5.92	750
(5q-en)	121 - 122	$C_{16}H_{16}O_{5}$	C, 66.6	66.66	2 950, 1 740, 1 700, 1 260
/ -	101 100		H, 5.6	5.59	740
(5q-ex)	131-132	$C_{16}H_{16}O_{5}$	C, 66.65	66.66	2 880, 1 730, 1 690, 1 275
(5r am)	106 107	сно	П, 0.0 С 67.6	0.09 87 54	740
(01-01)	100-107	017111805	C, 07.0 H 61	6.00	2 950, 1 750, 1 080, 1 590, 1 970, 1 140, 090
(5r-ex)	113114	C.,H.,O.	C. 67.55	67.54	2 990 1 720 1 680 1 600
(01 00)		-1718~5	H. 6.0	6.00	1 250, 1 140, 740
(5s-en)	142143	$C_{15}H_{13}O_{3}N$	C, 70.6	70.58	2 990, 2 240, 1 685, 1 590
			H, 5.15	5.13	1 275, 1 140, 980, 740
			N, 5.5	5.41	
(5 t-e n)	170 •	C ₁₆ H ₁₅ O ₃ N	C, 71.2	71.36	2 990, 2 250, 1 700, 1 595
			H, 5.7	5.61	1 140, 990, 740
(100 100		N, 5.15	5.20	
(ou-en)	108109	$C_{16}H_{18}O_{4}$	C, 70.1	70.05	2 990, 1 690, 1 590, 1 290
(511-04)	7770	СНО	п, 0.7 С 70.05	0.01	1 140
(Ju-ex)	11-10		H 67	6 61	1 150 1 110
(5 v -en)	89-91	CHO.	C 71.0	70.81	2 990 1 700 1 595 1 280
(0, 0, 0, 0, 0)	00 01	-17-140 - 4	H. 7.05	6.99	720
(5v- <i>ex</i>)	91—92	$C_{17}H_{90}O_{4}$	C, 70.85	70.81	2 990, 1 700, 1 595, 1 280
			H, 6.95	6.99	1 150
(5w)	86	$C_{18}H_{22}O_{5}$	C, 67.65	67.91	2 990, 1 695, 1 595, 1 445
(<i>m</i>)			H, 6.7	6.97	1 275, 1 170
(5x)	4850	$C_{16}H_{14}O_{3}S$	C, 67.05	67.11	2 940, 1 680, 1 675, 1 590,
			H, 5.0	4.93	1 250, 740
			5, 11.35	11.20	

TABLE 5

. • Sublimed.

OH), and 7.5–7.8 (m, 4 H) (Found: C, 73.75; H, 7.78. $C_{16}H_{20}O_3$ requires C, 73.82; H, 7.73%).

Reduction of E-(7h) with NaBH₄.—The alkylidenephthalide E-(7h) (100 mg), dissolved in methanol (20 ml), was reduced with NaBH₄. The reaction mixture was stirred for 2 h at room temperature, poured into water, and extracted twice with ether. Purification by chromatography on silica gel yielded E-(9h) (78 mg, 78%).

(E)-3(4-Hydroxy-1,3-dimethyl-3-phenylpentylidene)-

phthalide E-(9h): m.p. 153—154 °C, v_{max} . (KBr) 3 440 (OH), 2 960, 1 740 (phthalide C=O), 1 275, 1 090, 760, and 690 cm⁻¹; δ (CDCl₃) 1.18 (d, J 7 Hz, 3 H), 1.34 (s, 3 H), 1.58 (s, 3 H), 3.02 and 3.34 (ABq, J 15 Hz, 2 H), 4.04 (q, J 7 Hz, 1 H), and 7.2—7.9 (m, 9 H) (Found: C, 78.1; H, 6.8. C₂₁H₂₂O₃ requires C, 78.23; H, 6.88%).

Acetylation of the Tetracyclic Compound (111).—A solution of (111) (100 mg) in acetic anhydride (20 ml) was cooled to -20 °C, and three drops of HClO₄ were added carefully; immediately the mixture was poured into ice-water (100 ml). The reaction mixture was extracted with two portions of CH₃Cl₂ and the organic extracts were washed with water. Removal of the solvent on a rotary evaporator gave a yellow oil, which was separated by column chromatography on silica gel to yield (5l'-en) (91 mg, 78%).

7β-Acetoxymethyl-6,9-dimethyl-6,7,8,9-tetrahydro-6α,9αepoxybenzocyclo-octene-5,10-dione (51'-en); m.p. 96—98 °C; v_{max} (KBr) 2 980, 1 745, (ester C=O), 1 690 (conjugated C=O), 1 220, and 770 cm⁻¹; δ (CDCl₃) 1.60 (s, 6H), 1.63 (s, 3 H, CO-Me), 2.2 (m, 1 H), 2.6 (m, 2 H), 4.16 (m, 2 H), and 7.5— 7.9 (m, 4 H); ¹³C n.m.r. δ (CDCl₃) 19.7 (q), 24.3 (q), 24.9 (q), 40.1 (t), 48.2 (d), 61.9 (t), 88.7 (s), 90.3 (s), 128.7 (d), 132.5 (d), 132.7 (d), 134.3 (s), 135.5 (s), 169.5 (s), 205.4 (s), and 206.4 (s) (Found: C, 67.5; H, 6.1. C₁₇H₁₈O₅ requires C, 67.54; H, 6.00%).

Transformation of the Tetracyclic Compound (111) into the Primary Adduct (5q-en).—A solution of (111) (100 mg) in acetone (20 ml) was cooled in ice, and Jones reagent (2.0 M) was added dropwise with vigorous stirring until a red colour persisted. The reaction mixture was stirred at 30 °C for 24 h. The excess of oxidant was destroyed with isopropyl alcohol. Water was added to dissolve the precipitated salts, and the resulting green solution was extracted twice

TABLE 6

¹H N.m.r. (CDCl₃, δ) of the primary adducts (5)

			udduotto (o)
Compd.	Me ¹ , Me ²	Harom.	\mathbf{H}_{others}
(5a)	1.43	7.5-7.8 (m, 2 H)	1.09 (s 3 H), 1.25 (s, 3 H), 1.92 and
、 /	1.66	7.8-8.1 (m. 2 H)	2.15 ABa, / 14 Hz, 2 H)
(5b)	1.55	7.5-7.7 (m. 2 H)	1.10 (d. 17 Hz, 3 H), 1.20 (d. 17 Hz, 3
(*~)	1.63	7.7 - 81 (m 2 H)	H) $17-19$ (m 2 H)
(5c-en)	1.57	7.5-7.7 (m, 2 H)	0.90 (d I 7 Hz 6 H) 2.40 (m 2 H)
(0 - c n)	1.57	7.5 - 7.7 (m, 2 m)	0.00 (d, j / 112, 0 11), 2.40 (m, 2 11)
(5c ar)	1 49	7.7 - 3.0 (m, 2.11)	112 (d 17 Hz 6 H) 955 (m 9 H)
(00-22)	1.42	7.9 - 9.1 (m, 9.11)	1.13 (d, $j \neq 112, 0 11$), 2.03 (iii, $2 11$)
(53)	1 69	7.6 - 0.1 (11, 2.11)	
(5u - en)	1.02		1.1 - 1.8 (m, 0 H), 2.9 (m, 2 H)
(oe - <i>en</i>)	1.52	7.6-7.7 (m, 2 H)	1.1 - 1.8 (m, 8 H), 2.3 (m, 2 H)
		7.8-7.7 (m, 2 H)	
(51-en)	1.60	7.5-7.7 (m, 2 H)	1.0-2.0 (m, 10 H), 2.5 (m, 2 H)
		7.8—7.9 (m, 2 H)	
(5h-ex)	1.03	7.5—7.7 (m, 2 H)	1.3 (s, 3 H), 2.50 and 2.93 (ABq, J 13 Hz,
	1.70	7.7—7.8 (m, 2 H)	2 H), 7.2—7.5 (m, 5 H)
(5i-en)	1.60	7.5—8.0 (m, 4 H)	2.10 (dd, J 4 and 12 Hz, 1 H), 2.85 (dd,
	1.72		J 8 and 12 Hz, 1 H), 3.60 (dd, J 4 and
			8 Hz, 1 H), 7.0–7.4 (m, 5 H)
(5i-ex)	1.13	7.5-7.9 (m, 4 H)	2.30 (dd, / 10 and 15 Hz, 1 H), 2.73 (dd,
. ,	1.70		8 and 15 Hz, 1 H), 3.63 (dd. / 8 and 10
			Hz, 1 H), $7.2-7.3$ (m, 5 H)
(5a-en)	1.64	7.7-8.0 (m. 4 H)	2.35 (dd 16 and 12 Hz 1 H) 2.68 (dd
(-1)	1.73		I 8 and 12 Hz = 1 H = 3.20 (dd I 6 and 12 Hz = 1 H = 3.20 (dd I 6 and 12 Hz = 1 H = 3.20 (dd I 6 and 12 Hz = 1 H = 3.20 (dd I 6 and 12 Hz = 1 H = 3.20 (dd I 6 and 12 Hz = 1 H = 3.20 (dd I 6 and 12 Hz = 3.20 (
	2.00		$8 H_7 (1 H) 3.67 (s 3 H)$
(5a - ex)	1 50	77_{7} 78 (m 4 H)	240 (dd I 4 and 14 Hz 1 H) 253 (dd
(04 0%)	1 79	1.1 1.6 (m, 11)	I_{8} and I_{4} Hz I_{1} H) 3 38 (dd I_{4} and 8
	1.72		H_{7} 1 H) 3 80 (c 3 H)
(5r_en)	1 53	$7.6 - 7.7 (m \cdot 9 H)$	152 (s 3 H) 166 and 200 (ABa I 14)
(01-01)	1.60	7.8 - 8.0 (m 2 H)	H_{7} 9 H) 3 70 (c 3 H)
(5r_0x)	1.00	7.5 - 7.8 (m, 4 H)	$125 (e^{2} H) 9 13 and 9 08 (ABa I)$
(01-04)	1.60	1.5 — 1 .8 (III, 4 II)	1.25 (5, 5 11), 2.15 and 2.56 (ADQ, J)
(50 m)	1.00	76 79 (m 9 U)	9 A 2 (m 9 H) 2 59 (dd I A and 6 Ha
(35-01)	1.70	7.0-7.0 (III, 2 11) 7.9 (9.0 (m, 9 H)	2.43 (m, 2 m), 5.52 (uu, j 4 anu 0 mz, 1 m)
(54)	1.70	7.8 - 8.0 (m, 2 H)	
(ət-en)	1.73	7.0-7.8 (m, 2 H)	1.50 (S, 3 H), 2.14 and 2.76 (ABq, f 15
18	1.76	7.8 - 8.1 (m, 2 H)	HZ, Z H
(ou-en)	1.03	7.0 - 7.8 (m, 2 H)	0.74 (t, j 7 Hz, 3 H), 1.90 (dd, j 6 and 13
	1.58	7.9—8.1 (m, 2 m)	$\Pi Z, I \Pi, Z, I U (0, J I 3 \Pi Z, I \Pi), 3.30 (0, J I 3 \Pi Z) = 0.000 $
12	1 50		$\int 0 \Pi Z, I \Pi, 3.24 (M, 2 \Pi)$
$(\mathbf{ou} - ex)$	1.53	7.5—7.9 (m, 4 m)	1.23 (t, f 6 Hz, 3 H), 2.03 (dd, f 4 and 13
	1.58		Hz, I H, 2.38 (dd, $J T$ and 15 Hz, I H),
			3.56 (m, 2 H), 4.00 (dd, J 4 and 7 Hz, J H)
(1 45		
$(\mathbf{DV} - en)$	1.45	7.5—7.6 (m, 2 H)	0.63 (t, J 7 Hz, 3 H), 1.36 (s, 3 H)
	1.45	7.8 - 8.0 (m, 2 H)	1.63 and 2.92 (ABq, 16 Hz, 2 H)
$(\mathbf{DV} - ex)$	1.52	7.6 - 7.8 (m, 2 H)	1.23 (t, J / Hz, 3 H), 1.28 (s, 3 H), 1.90
(F)	1.62	7.8 - 8.1 (m, 2 H)	and 2.43 (ABQ, J 14 Hz, Z H)
(o w)	1.42	7.6-7.7 (m, 2 H)	v.70 (t, j 7 Hz, 3 H), 1.20 (t, j 7 Hz,
	1.50	7.9—8.0 (m, 2 H)	$3 H$, 1.90 and 2.90 (ABq, $\int 10 Hz$, $2 H$),
(~)			3.1
(5 x)	1.50	7.5—7.9 (m, 4 H)	3.98 (m, 1 H), 4.67 (d, f 10 Hz, 1 H),
	1.60		5.51 (dd, $\int 3$ and 6 Hz, 1 H), 6.27 (dd,
			J 2 and 6 Hz, 1 H)

TABLE 7

Physical	properties	of	the	spire	phthalides	(6)

Compd.	M.p. (°C)	Formula	Found (%)	Required (%)	$\nu_{\rm max}/\rm cm^{-1}$ (KBr)
(6a)	104-105	$C_{16}H_{18}O_{3}$	C, 74.25	74.39	2 940, 1 770, 1 470, 1 390
			H, 7.0	7.02	1 280, 1 220, 1 090, 1 040
(6d)	112-114	$C_{17}H_{18}O_{3}$	C, 75.65	75.53	2 950, 1 770, 1 460, 1 040
			H, 6.75	6.71	
(6h)	137 - 138	$C_{21}H_{20}O_{3}$	C, 78.7	78.72	2 950, 1 765, 1 230, 1 140
			H, 6.2	6.29	965, 750
(6i)	124 - 126	$C_{20}H_{18}O_{3}$	C, 78.4	78.41	2 960, 1 770, 1 250, 1 150
			H, 5.8	5.91	740
(6j)	224 - 226	$C_{26}H_{22}O_{3}$	C, 81.35	81.65	2 990, 1 770, 1 600, 1 450
			H, 5.65	5.80	1 385, 1 280, 1 225, 1 050
(6q)	107—109	$C_{16}H_{16}O_{5}$	C, 66.7	66.66	1 775, 1 750, 1 730, 1 390
			H, 5.6	5.59	1 240, 1 035, 765
(6r)	144145	$C_{17}H_{18}O_{5}$	C, 67.8	67.54	1 780, 1 740, 1 290, 1 220
			H, 6.2	6.00	1 090, 1 060
(6s)	157 - 159	C ₁₅ H ₁₃ O ₃ N	C, 70.6	70.58	2 950, 2 240, 1 775, 1 285
			H, 5.2	5.13	1 230, 1 080, 1 050
			N, 5.35	5.49	
(6t)	202203	C ₁₆ H ₁₅ O ₃ N	C, 71.45	71.36	2 990, 2 240, 1 790, 1 475
			H, 5.75	5.61	1 390, 1 290, 1 230, 1 060
			N, 5.2	5.20	

			TABLE 8		
		¹ H N.m.r. of th	e spirophthalides	(6) (CDCl ₃ , δ)	
(6a)	Me ¹ , Me ² 1.06	H _{ar} 7.5—8.0	om. (m. 4 H)	1.16 (s. 3 H) 1.1	H _{others} 6 (s. 3 H), 1,68 and
(6.4)	1.38		(, 4 11)	2.26 (ABq, J 10	Hz, 2 H)
(6a) (6h)	0.90	7.7-8.2 7.5-8.1	(m, 4 H) (m, 4 H)	1.4—2.0 (m, 6 H 1.90 (s, 3 H), 2.6	.), 3.2 (m, 2 H) 0 and 2.84 (ABq, 1
(6 i)	1.34 0.90	7 5-8 2	(m 4 H)	12 Hz, 2 H, 7.3 20 (m 1 H) 24	-7.5 (m, 5 H)
(01)	1.00	1.0 0.2	(, 11)	1 H)	
(6j)	1.33	7.5-8.0	(m, 4 H)	7.3—7.5 (m, 5 H 3.06 and 3.28 (A	.) Bq, / 11 Hz, 2 H),
(6a)	1.36 1.30	7 5	(m 4 H)	7.3 -7.5 (m, 10]	$H_{A} = \frac{1}{4} + \frac{1}{4$
(04)	1.30		(1 H), 3.76 (s, 3 H	$\frac{1}{4} \begin{pmatrix} aa, f \\ aa \end{pmatrix} = \frac{1}{2} \begin{pmatrix} aa \\ aa$
(61)	1.23	7.57.8 7.88.0	(m, 2 H) (m, 2 H)	1.06 (s, 3 H), 2.3 12 Hz, 2 H), 3.7	5 (s, 3 H)
(6s)	$1.30 \\ 1.52$	7.5-8.0	(m, 4 H)	2.28 (dd, J 4 and I 9 and 12 Hz	1 12 Hz, 1 H), 2.81 (dd, H) 3 42 (dd I 4 and
	1.02		(, , , , , , , , , , , , , , , , , , ,	9 Hz, 1 H)	
(6t)	1.26 1.37	7.5-8.0	(m, 4 H)	1.76 (s, 3 H), 2.4 13 Hz, 2 H)	6 and 2.60 (ABq, J
			TABLE 9		
		Physical propertie	es of the alkyliden	ephthalides (7)	
Compound 7 (7d)	M.p. (°C)	Formula	Found (%)	Required (%)	$\nu_{\rm max./cm^{-1}}$ (KBr)
	55-50		H, 7.1	7.02	1 275, 1 060, 990, 775, 690
<i>E</i> -(7d)	128—129	$C_{17}H_{18}O_{3}$	C, 74.4 H, 6.9	74.39 7.02	2 960, 1 765, 1 705, 1 475 1 280, 1 050, 970, 695
Z-(7e)	161—162	$C_{18}H_{20}O_{3}$	C, 76.1	76.03	2 920, 1 755, 1 705, 1 275, 1 215, 780
<i>E</i> -(7e)	129—130	C ₁₈ H ₂₀ O ₃	C, 76.05	76.03	2 940, 1 765, 1 705, 1 275,
$Z_{-}(7f)$	118—119	C ₁₅ H _{ee} O ₅	H, 7.2 C, 76.4	7.09 76.48	1 060, 755 2 990, 1 775, 1 700, 1 480,
E (7f)	194 195		H, 7.5 C 78 55	7.43 76.49	1 280, 1 070, 770, 700
E-(71)	12		H, 7.4	7.43	770, 700
Z-(7h)	152—153	C ₂₁ H ₂₀ O ₃	C, 78.5 H, 6.3	78.72 6.29	1 770, 1 705, 1 230, 1 180
<i>E</i> -(7h)	194-195	$C_{21}H_{20}O_{3}$	C, 78.7 H 6.05	78.72 6.29	2 980, 1 760, 1 705, 1 270 1 190
<i>Z</i> -(7i)	111—112	$C_{20}H_{18}O_{3}$	C, 78.25	78.41	1 770, 1 720, 1 285, 1 100
<i>E</i> -(7i)	129—130	$C_{20}H_{18}O_{3}$	н, 5.95 С, 78.35	5.92 78.41	1770, 700 1 775, 1 715, 1 480, 1 275
Z-(7i)	143—144	CaeHaeOe	H, 6.0 C. 81.7	5.92 81.65	770, 700 1 770, 1 700, 1 095, 1 080
= (·);	160 170	C H O	H, 5.9	5.80 81.65	705
E-(7))	109—170		H, 5.85	5.80	705
Z-(71)	97—99	C ₁₅ H ₁₆ O ₄	C, 69.3 H, 6.25	69.21 6.20	3 400, 1 770, 1 700, 1 090 700
<i>E</i> -(71)	114—115	$\mathrm{C_{15}H_{16}O_4}$	С, 69.25 н 63	69.21 6 20	3 300, 1 760, 1 690, 1 180 720
Z-(7n)	87—89	$C_{16}H_{18}O_{4}$	C, 70.1	70.05	3 420, 1 775, 1 695, 1 100
<i>E</i> -(7n)	9597	$C_{16}H_{18}O_{4}$	H, 6.25 C, 70.1	6.20 70.05	720 3 420, 1 775, 1 695, 1 090
$Z_{-}(7_{0})$	7879	C.,H.,O.	H, 6.65 C. 70.15	6.61 70.05	720 3 400, 1 765, 1 700, 1 100
2-(10) E (1-)		C II O	H, 6.8	6.61	730 2 450 1 755 1 705 1 105
E-(70)	80—88	$C_{16}H_{18}O_{4}$	H, 6.8	6.61	3 450, 1 755, 1 705, 1 105 730
Z-(7 q)	95—96	С ₁₆ Н ₁₆ О ₅	C, 66.8 H. 5.5	66.66 5.59	1 770, 1 720, 1 290, 1 100 780, 700
<i>E</i> -(7q)	114—115	$\mathrm{C_{16}H_{16}O_5}$	C, 66.7	66.66	1 765, 1 720, 1 290, 1 080 780 - 700
<i>Z</i> -(7r)	118120	$C_{17}H_{18}O_{5}$	C, 67.5	67.54	2 940, 1 765, 1 710, 1 290
<i>E</i> -(7r)	97—98	$C_{12}H_{18}O_{8}$	H, 6.05 C, 67.65	6.00 67.54	1 245, 1 000, 990, 770, 690 2 950, 1 775, 1 720, 1 245
7_(7s)	116-117	C. H. O.N	H, 6.05 C 70.4	6.00 70.58	1 110, 780 2 250, 1 770, 1 700, 1 250
2-(13)	110 117	0161118031	H, 5.25	5.13	740
<i>E</i> -(7s)	109-110	$C_{15}H_{13}O_{3}N$	N, 5.45 C, 70.5	5.49 70.58	2 240, 1 775, 1 695, 1 240
			H, 5.2 N, 5.45	5.49 5.49	750
Z-(7t)	10 2—103	$\mathrm{C_{16}H_{15}O_{3}N}$	C, 71.45	71.39	3 000, 2 240, 1 775, 1 735 1 290, 1 090, 780, 895
			N, 5.05	5.20	
<i>E</i> -(7t)	128—129	C ₁₆ H ₁₅ O ₃ N	C, 71.35 H, 5.8	71.36 5.61	3 000, 2 250, 1 775, 1 730, 1 280, 1 090, 1 050, 780
Z-(7v)	89—90	$C_{17}H_{30}O_{4}$	C, 70.9 H 7.05	70.81	2 990, 1 765, 1 720, 1 480 1 280, 1 110, 1 050, 780, 780
<i>E-</i> (7v)	91—92	$C_{17}H_{20}O_{4}$	Ċ, 70.9	70.81	3 000, 1 765, 1 720, 1 100
			н, 7.05	0.99	785, 700

TABLE 10

¹H N.m.r. of the alkylidenephthalides (7) (CDCl₃, δ)

			TT
Compd.	Me ¹ , Me ²	Harom.	Hothers
Z-(7 d)	2.03	7.5—8.0 (m, 4 H)	1.5—2.2 (m, 6 H), 3.4 (m, 1 H), 3.9 (m,
• •	2.07		1 H)
<i>E</i> -(7d)	1.95	7.5—8.0 (m, 4 H)	1.7—2.1 (m, 6 H), 3.4 (m, 1 H), 3.9 (m,
. ,	2.00		1 H)
Z-(7e)	2.08	7.4—7.7 (m, 2 H)	1.4-2.2 (m, 8 H), $3.0-3.2$ (m, 2 H)
	2.08	7.8 - 8.0 (m, 2 H)	
<i>E</i> -(7e)	2.05	7.3—7.9 (m, 4 H)	1.2-2.2 (m, 8 H), $3.1-3.2$ (m, 2 H)
· · /	2.10		
Z - (7f)	2.05	7.4—8.0 (m, 4 H)	1.2—2.2 (m, 10 H), 3.2 (m, 1 H), 3.9 (m,
、 /	2.06		1 H)
E-(7f)	1.98	7.4—8.0 (m, 4 H)	1.2-2.2 (m, 10 H), 3.1 (m, 1 H), 3.8 (m,
	2.06		1 H)
Z-(7h)	1.60	7. 4 —7.7 (m, 3 H)	1.60 (s, 3 H), 2.88 and 3.58 (ABq, J 12 Hz,
	1.98	7.9 (m, 1 H)	2 H), 7.3 (m, 5 H)
<i>E</i> -(7h)	1.64	7.4—8.0 (m, 4 H)	1.60 (s, 3 H), 2.90 and 3.76 (ABq, J 14 Hz,
	1.99		2 H), 7.2 — 7.4 (m, 5 H)
Z-(7i)	1.93	7.4—8.0 (m, 4 H)	2.6-3.3 (m, 2 H), 4.08 (dd, J 6 and 8 Hz,
	2.06		1 H), 7.3 (m, 5 H)
<i>E</i> -(7i)	1.91	7.4—8.0 (m, 4 H)	2.83 (dd, $\int 8$ and 14 Hz, 1 H), 3.38 (dd, \int
	2.10		6 and 14 Hz, 1 H), 3.90 (ddm, J 6 and 8
			Hz, 1 H), 7.2 (m, 5 H)
<i>Z</i> -(7j)	1.85	7.4—7.8 (m, 4 H)	3.63 (s, 2 H), $7.1 - 7.4$ (m, 10 H)
	2.05		
<i>E</i> -(7j)	1.75	7.4—8.0 (m, 4 H)	3.65 (s, 2 H), 7.07.4 (m, 10 H)
	2.03		
Z-(71)	2.20	7.4—8.0 (m, 4 fl)	2.0—3.2 (m, 3 m), 3.84 (u, j 3 m2, 2 m)
E (71)	2.20	79 80 (m / U)	97 20 (m 2H) 285 (d 15Hr 2H)
E-(11)	2.08	7.3—8.0 (III, 4 II)	2.7—3.0 (m, 3 m), 3.85 (d, 5 0 m2, 2 m)
$Z_{-}(7n)$	2.28	7.5 - 8.0 (m. 4 H)	1 21 (s. 3 H) 2 79 (s. 2 H) 3.66 (s. 2 H)
2-(11)	2.10	1.0 0.0 (, 1 11)	1.21 (0, 0 12), 2.10 (0, 2 12), 0.00 (0, 2)
$E_{-}(7n)$	2.09	7.5 - 8.0 (m, 4 H)	1.24 (s. 3 H), 2.92 (s. 2 H), 3.78 (s. 2 H)
2 (11)	2.20		
$Z_{-}(70)$	2.17	7.5-8.0 (m, 4 H)	1.26 (d, / 7 Hz, 3 H), 2.7-3.2 (m, 2 H),
- (,	2.25		3.84 (d, J 6 Hz, 2 H)
E-(70)	2.04	7.4—7.9 (m, 4 H)	1.22 (d, J 7 Hz, 3 H), 2.9 — 3.3 (m, 2 H),
、 ,	2.21		3.76 (d, J 7 Hz, 2 H)
Z -(7q)	2.18	7.5—8.0 (m, 4 H)	3.00 (m, 2 H). $3.74 (s, 3 H)$, $3.87 (t, J)$
	2.29		6 Hz, 2 H)
<i>E</i> -(7q)	2.05	7.4—8.0 (m, 4 H)	3.13 (d, J 6 Hz, 2 H), 3.67 (s, 3 H),
	2.28		3.81 (t, J 6 Hz, 1 H)
<i>Z</i> -(7r)	2.13	7.4—7.9 (m, 4 H)	1.40 (s, 3 H), 3.1 (m, 2 H)
	2.22		3.78 (s, 3 H)
<i>E</i> -(7 r)	1.94	7.4—8.0 (m, 4 H)	1.36 (s, 3 H), 3.13 and 3.40 (ABq, J 15
	2.22		Hz, Z H, 3.73 (s, 3 H)
Z-(7s)	2.27	7.3—8.0 (m, 4 H)	2.78 (dd, $\int 9$ and 13 Hz, 1 H), 3.15 (dd,
	2.45		$\int 5 \text{ and } 13 \text{ Hz}, 1 \text{ H}, 5.85 (uu, \int 5 \text{ and } 9$
$E(\pi_{-})$	0.00	72 80 (m 4 H)	$(m_2, 1, n)$ 2.00 (m 2.11) A 20 (dd I 5 and 7.11 m)
E-(75)	2.28	7.3—8.0 (III, 4 II)	5.00 (III, 2 II), 4.80 (uu, j 5 and 7 II2, 1 II)
7 (7+)	2.45	73_{80} (m 4 H)	158 (c 3 H) 200 and 3 15 (ABa / 15
$\mathcal{L}^{-}(\mathcal{H})$	2.30	7: 5 —8:0 (m, 4 11)	$H_{7} = 2 H_{1}$
$F_{-}(7+)$	2.20	7.3 - 8.0 (m. 4 H)	1.55 (s. 3 H), 2.95 and 3.28 (ABa, I 15
∠ -(1 0)	2.53		Hz. 2 H)
$Z_{-}(7v)$	2.20	7.3 - 7.9 (m, 4 H)	1.18 (t. I 7 Hz, 3 H), 1.33 (s. 3 H), 2.68
- ()	2.23		and 3.03 (ABq, 1 14 Hz, 2 H), 3.3 (m.
			2 H)
E-(7v)	2.14	7.3—7.9 (m, 4 H)	1.20 (t, / 7 Hz, 3 H), 1.30 (s, 3 H), 2.90
	2.25		(s, 2 H), 3.4 (m, 2 H)

TABLE 11

	P	hysical properties	of the tetracyclic	compounds (11)	
Compd.	M.p. (°C)	Formula	Found (%)	Required (%)	$\nu_{\rm max}/{\rm cm}^{-1}$ (KBr)
(111)	183—184	$C_{15}H_{16}O_{4}$	C, 69.1 H, 6.2	69.12 6.20	3 310, 2 990, 1 700, 1 260 1 120, 990
(11m)	198 *	$C_{17}H_{10}O_{4}$	C, 70.8 H, 7.1	70.81 6.99	3 440, 2 980, 1 700, 1 370 1 105, 1 065
(11n)	18 6 —188	$C_{16}H_{18}O_{4}$	C, 70.05 H, 6.75	70.05 6.61	3 36 0, 1 705, 1 280, 1 120 1 050, 1 020, 7 6 5
(110)	148150	$C_{16}H_{16}O_{4}$	C, 70.1 H, 6.8	70.05 6.61	3 370, 1 700, 1 380, 1 130 1 060, 780
(11p)	21 4 —215	$\mathrm{C_{16}H_{18}O_{5}}$	C, 65.9 H, 6.3	66.19 6.25	3 470, 3 250, 1 665, 1 120 1 050, 760, 700

• Sealed.

TABLE 12

¹ H N.m.r. of t	the tetracyclic	compounds (1	1) (CDCl ₃ , δ))
----------------------------	-----------------	--------------	------------------------------------	---

Compound	Me ¹ , Me ²	Harom.	\mathbf{H}_{others}
(111)	1.34	7.4—7.7 (m, 4 H)	2.30 (m, 2 H), 2.63 (m, 1 H), 3.75 (d,
	1.50		/ 8 Hz, 1 H), 4.04 (dd, $/ 4$ and 8 Hz, 1 H)
(11m)	1.42	7.4—7.7 (m, 4 H)	1.26 (s, 3 H), 1.58 (s, 3 H), 2.03 (dd,
	1.74	· ,	/ 2 and 12 Hz, 1 H), 2.52 (m, 1 H)
(11n)	1.23	7.2—7.6 (m, 4 H)	1.13 (s, 3 H), 1.80 and 2.57 (ABq, 1
	1.28	· · · /	13 Hz, 2 H), 3.57 and 3.73 (ABq, 1 10 Hz,
			2 H)
(110)	1.32	7.3-7.6 (m. 4 H)	$\overline{1.17}$ (d. 1 6 Hz, 3 H), 2.2–2.6 (m. 2 H).
、 /	1.46		3.80 and 4.02 (ABa I 8 Hz 2 H)
(11p)	1.33	7.3-7.8 (m. 4 H)	2.6-2.7 (m 2 H) 3.6-4.0 (m 4 H)
(- I)	1.50		
	1.50		

with ether. The combined extracts were washed with water and dried (Na_2SO_4) . Removal of the solvent on a rotary evaporator afforded crude acid (5q'-en). This was treated with an excess of diazomethane. After standing at room temperature for 30 min, the solvent was removed on a rotary evaporator. The residue was chromatographed on silica gel to yield (5q-en) (83 mg, 78%).

Methylation of the Alkylidenephthalides Z- and E-(7q).-A mixture of Z-(7q) (160 mg), K₂CO₃ (200 mg), and methyl iodide (100 mg) in dry dimethylformamide (20 ml) was refluxed under a nitrogen atmosphere for 2 h. The reaction mixture was poured into water and extracted twice with ether. The organic extracts were washed with water and dried (Na₂SO₄). Removal of the solvent on a rotary evaporator gave a yellow oil, which was separated by column chromatography on silica gel to yield the alkylidenephthalide Z-(7r) (133 mg, 79%). The E-isomer (100 mg) was similarly alkylated with methyl iodide to yield E-(7r) (90 mg, 86%).

Transformation of the Tetracyclic Compound (11n) into the Primary Adduct (5r-en).-A solution of (11n) (100 mg) in acetone (20 ml) was cooled in ice, and Jones reagent 2.0 M was added dropwise with vigorous stirring until a red colour persisted. The reaction mixture was stirred at 30 °C for 24 h. The excess of oxidant was destroyed with isopropyl alcohol. Water was added to dissolve the precipitated salts, and the resulting green solution was extracted twice with ether. The combined extracts were washed with water and dried (Na₂SO₄). Removal of the solvent on a rotary evaporator afforded crude acid. This was treated with excess of diazomethane in ether. After 30 min at room temperature, the solvent was removed on a rotary evaporator. The residue was chromatographed on silica gel to yield (5r-en) (62 mg, 56%)

Transformation of the Primary Adduct (5s-en) into the Primary Adduct (5q-en).-A mixture of (5s-en) (100 mg), 10 ml of 5% aqueous NaOH, and 10 ml of isopropyl alcohol was heated at 50 °C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with 5% aqueous HCl. The resulting mixture was extracted twice with ether, and the combined extracts were washed with water and dried (Na_2SO_4) . Removal of the solvent on a rotary evaporator afforded crude acid (5q'-en). This was treated with excess of diazomethane. After 30 min at room temperature, the solvent was removed on a rotary evaporator. The residue was chromatographed on silica gel to yield the primary adduct (5q-en) (62 mg, 55%).

Methylation of the Alkylidenephthalides Z- and E-(7s).-A mixture of Z-(7s) (100 mg), K₂CO₃ (200 mg), and methyl iodide (100 mg) in dimethylformamide (20 ml) was refluxed under a nitrogen atmosphere for 2 h. The reaction mixture was poured into water and extracted twice with ether. The

combined extracts were washed with water and dried (Na_2SO_4) . Removal of the solvent on a rotary evaporator gave a yellow oil, which was separated by column chromatography on silica gel to yield the alkylidenephthalide Z-(7t) (76 mg, 72%).

The E-isomer was similarly methylated with MeI-K₂CO₃ in DMF to give E-(7t) (79 mg, 75%).

Transformation of the Primary Adduct (5t-en) into the Primary Adduct (5r-en).-A mixture of (5t-en) (100 mg), 5% aqueous NaOH (10 ml), and isopropyl alcohol (10 ml), was heated at 50 °C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with 5% aqueous HCl. The resulting mixture was extracted twice with ether, and the combined organic extracts were washed with water and dried (Na₂SO₄). Removal of the solvent on a rotary evaporator afforded crude acid. This was treated with an excess of diazomethane in ether. After 30 min, the solvent was removed on a rotary evaporator. The residue was chromatographed on silica gel to yield the primary adduct (5ren) (71 mg, 63%).

Quantum Yield Determination.---Valerophenone actinometry was used for quantum yield determination. The 313 nm line was isolated with a solution containing 0.002 M K_2CrO_4 in a 1% aqueous solution of K_2CO_3 as a filter. The degree of the reaction was determined by g.c. analysis relative to known concentration of alkane internal standard.

[2/354 Received, 1st March, 1982]

REFERENCES

 Part 6, A. Osuka, J. Org. Chem., in the press.
 S. Arakawa, J. Org. Chem., 1977, 42, 3800.
 K. Maruyama, A. Osuka, and H. Suzuki, Chem. Lett., 1980, 919.

⁴ In the preliminary paper, ref. 3, although we erroneously reported that only *endo*-adduct (5u-*en*) was formed in the reaction with ethyl vinyl ether (4u), it should be corrected as described in the text.

⁶ P. J. Wagner and I. E. Kochevar, J. Am. Chem. Soc., 1972, 94, 7489.
⁶ P. J. Wagner and I. E. Kochevar, J. Am. Chem. Soc., 1968, 90, 2232.

K. Maruyama and A. Osuka, J. Org. Chem., 1980, 45, 1898.

⁸ (a) W. C. K. Clark, A. D. Litt, and C. Steel, J. Chem. Soc.,

Chem. Commun., 1969, 1087; (b) H. Lutz and L. Lindquist, ibid., 1971, 493; (c) F. D. Lewis, J. Phys. Chem., 1970, 74, 3332. * (a) N. E. Schore and N. J. Turro, J. Am. Chem. Soc., 1975, 97, 2482; (b) U. Maharai and M. A. Winnik, ibid., 1981, 103,

2328, and references cited therein. ¹⁰ I. E. Kochevar and P. J. Wagner, J. Am. Chem. Soc., 1972,

94, 3859. ¹¹ I. J. Lev, K. Ishikawa, H. S. Bhacca, G. W. Griffin, J. Org. Chem., 1976, 41, 2654.

12 (a) R. Huisgen, Int. Congr. Pure Appl. Chem., 1974, 23rd,

- 1, 226; (b) R. Huisgen, J. Org. Chem., 1968, 33, 2291; (c) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 633. ¹³ (a) K. N. Houk, J. Sims, R. E. Duke, Jun., R. W. Strozier, and J. K. George, J. Am. Chem. Soc., 1973, 95, 7287; (b) K. N. Houk, J. Sims, C. R. Watts, and L. J. Luskus, *ibid.*, 1973, 95, 7301; (c) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1977, 16, 572
- ¹⁰ (a) K. Maruyama and A. Osuka, Chem. Lett., 1979, 77;
 (b) A. Osuka, J. Org. Chem., in the press.

- 1963, 8, 506.